In der Zahlentheorie ist eine Primzahlzwillings-Bi-Kette der Länge eine Primzahlenfolge der Form
(der Ausdruck kommt vom englischen Bi-twin chain bzw. Bitwin chain).
Beispiele
- Die kleinsten , welche eine Primzahlzwillings-Bi-Kette der Länge 2 generieren (also auf die beiden Paare führen), sind die folgenden:
- 6, 30, 660, 810, 2130, 2550, 3330, 3390, 5850, 6270, 10530, 33180, 41610, 44130, 53550, 55440, 57330, 63840, 65100, 70380, 70980, 72270, 74100, 74760, 78780, 80670, 81930, 87540, 93240, 102300, 115470, 124770, 133980, 136950, 156420, … (Folge A066388 in OEIS)
- Die kleinsten Primzahlzwillings-Bi-Ketten der Länge sind die folgenden (dabei ist das Produkt aller Primzahlen bis (Primfakultät)):
- Die größten Primzahlzwillings-Bi-Ketten der Länge sind die folgenden:
- Die Primzahlzwillings-Bi-Kette der Länge 9 ist momentan (Stand: 20. Juni 2017) die längste bekannte Kette. Es ist auch gleichzeitig die einzige bekannte Kette dieser Länge.
Eigenschaften
- Eine Primzahlzwillings-Bi-Kette der Länge 1 hat die Form . Man nennt sie Primzahlzwilling.
- Jedes der Paare mit ist ein Primzahlzwilling.
- Die Zahlen bilden eine Cunningham-Kette der ersten Art mit Gliedern.
- Die Zahlen bilden eine Cunningham-Kette der zweiten Art mit Gliedern.
- Jede Primzahl der Form mit ist eine Sophie-Germain-Primzahl.
- Jede Primzahl der Form mit ist eine sichere Primzahl.
- Sei mit , sodass mindestens eine Primzahlzwillings-Bi-Kette der Länge 2 ist. Dann gilt:
- mit
Verallgemeinerung
Eine verallgemeinerte Primzahlzwillings-Bi-Kette der Länge ist eine Primzahlenfolge der Form
- mit
Beispiele
- Die größten verallgemeinerten Primzahlzwillings-Bi-Ketten der Länge sind die folgenden:
Einzelnachweise
Weblinks
- Eric W. Weisstein: Bitwin Chain. In: MathWorld (englisch).